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INTRODUCTION TO MEASUREMENTS 

AND UNCERTAINTY THEORY 
 

 

1. Introduction. 

Making a measurement means to ascertain the amount of a physical magnitude in 

terms of a standard unit. Therefore, it is essential to express the result of a measurement 

with a number and the appropiate units. For example, if somebody says that the speed of 

an airplane is 800 we are receiving an incomplete information. What do 800 mean? Meters 

per second? Kilometers per hour? Miles per hour? 

Only when indicating the measured quantity along with its units, i.e. 800 km/h, useful 

information is being given. There are different systems of units, directly intertwined by 

arithmetic operations. Nowadays, the most used system of units is the Système 

International (SI), and this is the one that we will primarily use in the laboratory. The SI 

consists of seven base units: kilogram, meter, second, ampere, Kelvin, mol and candela. 

Unfortunately, it is not possible to accomplish a measure with no uncertainty. These 

uncertainties can be due to multiple causes. Although some uncertainties are caused by 

human errors, some others are inherent to the process of measure and impossible to avoid. 

The order of magnitude of the total uncertainty in a measure represents its accuracy. When 

measuring a physical magnitude, we should know how reliable the measurement is. That 

reliability represents the measure precision, which can be known after estimating the 

uncertainty. In this guide we will learn how to estimate the uncertainty committed when 

accomplishing a measure in the laboratory. 

 

2. Types of uncertainties. 

There are three categories of uncertainties: Precision, systematic uncertainties and 

random uncertainties. 

• Precision: Every measuring equipment have at least one scale. The smallest scale 

graduation determines how precisely one can infer the value of a parameter, i.e. the 

accuracy we can reach. 
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For example, a conventional ruler is divided into centimeters and millimeters. 

Therefore, any length that we measure using that ruler will have an uncertainty of 

about 1 mm. This uncertainty can only be decreased if we use a device with higher 

accuracy. 

Then, the Precision correlates to the equipment accuracy, and it will be referred as 

𝜀𝑝 in this guide. 

• Systematic errors (or determinate errors): The most common types are 

instrumental error, operator error, and method error. Instrumental errors are 

usually due to a bad operation or miscalibration of the measuring instrument. They 

are often unidirectional, so they slant the result of the measurement consistently 

causing the value to be too large or too small always in the same amount. In 

principle, systematic errors can be eliminated if the nature of the bias is identified. 

An easy example of a systematic error is a losing time clock. The clock will always be 

slow from the right time, but the right time can be calculated if we know the clock 

delay. Another solution is to repair the clock! 

One way to avoid these errors is to check the correct operation and calibration of 

the measuring devices. 

• Random errors (or indeterminate errors): They are the result of unavoidable 

sources of error shifting randomly the measured value to higher or lower values over 

the real one. The random errors, unlike the systematic errors, can be reduced, but 

never eliminated. 

For example, let us imagine that we want to time one minute using a digital clock 

which have a precision of a hundredth of a second. It can be seen that we cannot 

manage to reach a display of exactly 60 s. Our reaction time always produces an 

uncertainty of a few hundredths of a second. In this case the random error is only 

due to the operator skills, and not to the operation or calibration of the clock. 

The random error will be designated as 𝜀𝑎𝑐𝑐. in this guide. In next sections we will 

see the mathematical treatment of these uncertainties. 

The total error of a measurement is usually a combination of the three types of errors 

described above. We don’t know the true value of the total error (if we did it wouldn’t be 

an error!), but it should be estimated as we are able to. The result of any physical 

measurement is expressed with a numerical value, 𝑥, and the associated degree of 

uncertainty, expressed as ∆𝑥. 
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3. Reporting the result of an experimental measurement. 

Once we have measured a certain magnitude, 𝑥, and we know that its uncertainty is 

∆𝑥, we should express the result as: 

   𝑥 = (𝑥0 ± ∆𝑥) [units]     (1) 

the measured value and the uncertainty being expressed in the same units.  

EXAMPLE 

With a graduated ruler a person's height has been measured. The result is 1.76 m, and 

the uncertainty is 2 cm. The right way to express this measurement is: 

   𝐻𝑒𝑖𝑔ℎ𝑡 = (1.76 ± 0.02) 𝑚 

 

4. Direct measurements. 

A direct measurement is obtained using a measuring device. In this section we will 

study the uncertainties associated to this kind of measurements assuming that they are free 

from systematic errors. 

4.1. Uncertainty in a single measurement of a magnitude. 

When we perform a single measurement of a magnitude 𝑥, the uncertainty is just the 

instrument precision, ∆𝑥 = 𝜀𝑝. In order to determine 𝜀𝑝 we can define two cases depending 

on the type of instrument being analogical or digital.  

• Analogical instrument: The precision is given as ½ the smallest scale graduation 

𝜀𝑝 = 𝑆𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 ×
1

2 

For example, the precision of a ruler graduated in millimeters is 𝜀𝑝 = 0.5 𝑚𝑚.  

• Digital instrument: The precision is given as the smallest value that the device can 

measure. 

  𝜀𝑝 = 𝑆𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡 

For example, the precision of a digital scale which can measure grams is 𝜀𝑝 = 1 𝑔.  
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4.2. Uncertainty in a finite set of measurements of a magnitude. 

In general, a single measurement of a magnitude is not reliable enough, as many factors 

can drive it wrong, like a misreading of the scale, lack of attention when writing down the 

result, etc.  

In order to avoid that, one can make repeated measurements of the same magnitude 𝑥. 
The result is a finite set of measurements (𝑥1, 𝑥2, … , 𝑥𝑛), each of them affected by the 
precision 𝜀𝑝. But, which result is more accurate? Should we choose only one? In this case, 

we will get the best result by giving equal weight to all measurements, i.e., simply 
expressing the result as the average or mean, 𝑥̅, over the set: 

  𝑥̅ =
𝑥1+𝑥2+⋯+ 𝑥𝑛

𝑛
=

∑ 𝑥𝑖
𝑛
𝑖=1

𝑛
      (2) 

The standard deviation of the measured values is represented by 𝜀𝑎𝑐𝑐 and is given by 

the formula: 

 𝜀𝑎𝑐𝑐(𝑥̅) = √
(𝑥1−𝑥̅)2+(𝑥2−𝑥̅)2+⋯+(𝑥𝑛−𝑥̅)2

𝑛
= √

∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1

𝑛
  (3) 

The standard deviation is sometimes referred to as the mean square deviation and it 

measures how widely spread the measured values are on either side of the mean. 

The final uncertainty, ∆𝑥, in our set of measurements will be the maximum value of 

either the precision and the standard deviation: 

   ∆𝑥 = 𝑚𝑎𝑥(𝜀𝑝, 𝜀𝑎𝑐𝑐 )      (4) 

Then, the most precise result will be 𝑥̅ with an uncertainty ∆𝑥 calculated from equation 

(4).  

 

EXAMPLE:  

 

15 length measurements from a bar were taken in the laboratory. The results, using a 

ruler graduated in millimeters, are listed below: 

 

L  ( mm ) L  ( mm ) L  ( mm ) 

15.0 14,0 13.5 

15.5 15.5 15.5 

13.5 15.0 14.0 

14.0 14.0 15.5 

13.0 14.0 14.0 
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Let us try to get the best approximation to the true value of L  and estimate its 

uncertainty. 

As the ruler is an analogical device, the uncertainty in one single measurement is:  

  ∆𝐿𝑖 = 𝜀𝑝 =
1 𝑚𝑚

2
= 0.5 𝑚𝑚 

The best approximation to the true value of L  is the mean of the set of measurement: 

  𝐿̅ =
∑ 𝐿𝑖

15
𝑖=1

15
= 14.4 𝑚𝑚 

In order to calculate the standard deviation on L , it can be useful to use a table like 

the one below:  

 

i 0 5 iL mm   −iL L    2( )−iL L  

1 15.0   0.6 0.36 

2 15.5   1.1 1.21 

3 13.5 -0.9 0.81 

4 14.0 -0.4 0.16 

5 13.0 -1.4 1.96 

6 14.0 - 0.4 0.16 

7 15.5   1.1 1.21 

8 15.0   0.6 0.36 

9 14.0 -0.4 0.16 

10 14.0 -0.4 0.16 

11 13.5 -0.9 0.81 

12 15.5   1.1 1.21 

13 14.0 -0.4 0.16 

14 15.5   1.1 1.21 

15 14.0 -0.4 0.16 

   216  10.1 

 

The standard deviation is calculated by means of equation (3).  

  𝜀𝑎𝑐𝑐(𝐿̅) = √
∑ (𝐿𝑖−𝐿̅)215

𝑖=1

15
= 0.821 𝑚𝑚 

 

Then, the uncertainty of the measurement is: 

  ∆𝐿 = 𝑚𝑎𝑥(𝜀𝑝, 𝜀𝑎𝑐𝑐) = 𝑚𝑎𝑥(0.5, 0.821) = 0.821 𝑚𝑚 

 
 

5. Significant figures: Rounding off. 
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When we estimate the uncertainty of a measurement, the result may present a large 

number of digits. There is no sense in overstating the precision of the measurement 

determination, as we just obtain an estimated value of the uncertainty and the first nonzero 

digit determines its magnitude. 

In the last example, the uncertainty of the measurement was ∆𝐿 = 0.821 𝑚𝑚. The 

most significant figure indicates an uncertainty in the range of tenths of millimeter. With an 

uncertainty like this, it makes no difference to have an error of 1 thousandth a millimeter 

or 2 hundredths a millimeter. 

The value of the uncertainty L  indicates that the measurement L  is not reliable over 

tenths a millimeter. That way, it is established that the value of a measurement cannot have 

more precision than the uncertainty. The process consists in rounding off the uncertainty 

value in order to have only one nonzero digit. 

The next criteria will be used to round off the value of a measurement and its 

uncertainty:  

1. Both numbers should be expressed using the same units.  

2. Only one non zero figure should be considered for the uncertainty. For example, an 

uncertainty of 0.345 s should be written as 0.3 s and an accuracy of 86 kg as 90 Kg. An 

exception is made when the most significant figure is 1 and the next figure is minor or equal 

to 5; in this case the number “1” remains, and the next figure remains too. For example, an 

error of 0.143 Kg rounds to 0.14 Kg. 

In order to get these results we have rounded off the values according to the following 

rules:  

a) If the first dropped digit is greater than or equal to 5, the last kept figure should be 

increased in 1 unit. For example, if we round off 0.861342 s, we should add one unit 

to the “8” and express this time period as 0.9 s, since the first dropped number is 6 

> 5. 

b) If the first dropped digit is minor than 5, the last kept figure remains the same. That 

way, 234.38 m rounded off in the most significant figure will be 200 m.  

c) If the first dropped figure equals 5, we may find two situations:  

• In the next dropped figures, there are nonzero values. In this case, last 

preserved figure grows in 1 unit. For example, 35.234 s is round to 40 s. 
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• All the drop figures are zero except a 5 number. In this case, the last kept figure 

remains the same. For example, 35.000 N rounds off 30N.  

These round off rules are applicable both to the total error value and to the 

measurement value. 

3. The measurement value should have the same precision than the uncertainty. Rounding 

off figures implies to turn into zero all the figures whose order of magnitude is minor than 

the uncertainty one. However, differing from the uncertainty, the result can have more than 

one nonzero digit. To round off the measurement value it is necessary to round off the 

uncertainty value before. For example, if the uncertainty is 0.7 Kg and the value of the 

measure is 25.784535 Kg, the final result is expressed as (25.8  0.7) kg. If the uncertainty 

was 7 kg, the result would be (26  7) Kg 

Let us see the following example as a resume of the previous explanation.  

 

EXAMPLE:   

Round off and express these measurements and uncertainties according to the previous 

criteria. 

Uncertainty (m) 
Rounded 

uncertainty (m) 
Measure (m) Result (m) 

0.018 0.02 0.987 0.99±0.02 

0.068 0.07 25.8251 25.83±0.07 

0.072 0.07 25.825 25.82±0.07 

0.66 0.7 0.88 0.9±0.7 

0.52 0.5 12 12.0±0.5 

0.942 0.9 1.867 1.9±0.9 

0.987 1 26.97 27±1 

11.897 12 356.257 356±12 

26 30 364 360±30 

340 300 588.6 600±300 

370.86 400 25.82 0±400 

 

6. Absolute and relative errors: Analysis of the uncertainty. 
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So far we have only considered the absolute errorx . In order to compare the error 

with a measurement itself, we can use the relative error, calculated by the following 

formula:  

  𝜀𝑟𝑒𝑙 =
∆𝑥

𝑥
        (5) 

Or:  

  𝜀𝑟𝑒𝑙(%) =
∆𝑥

𝑥
· 100       (6) 

If we express it in %:  

EXAMPLE:   

Suppose that we have measured the distance from the Earth to the Sun ( TSR ) and from 

Marte to the Sun ( MSR ), and that the obtained results are: 

𝑅𝑇𝑆 = (1.5 ± 0.4) · 108 𝑘𝑚 

𝑅𝑀𝑆 = (22.8 ± 0.4) · 108 𝑘𝑚 

In both results, the absolute error is the same: 0.4·108 km. However, the uncertainty is 

much higher in the first case ( TSR ) than in the second one ( MSR ), as the relative error 

indicates: 

𝜀𝑟(𝑅𝑇𝑆) =
0.4 · 108

1.5 · 108
· 100 = 27% 

𝜀𝑟(𝑅𝑀𝑆) =
0.4 · 108

22.8 · 108
· 100 = 2% 

 

7. Indirect measurements. 

We may find in the laboratory physical magnitudes that cannot be directly measured 

but can be calculated from two or more directly measured quantities. In this case we are 

making indirect measurements. For example, an indirect measurement is the surface of a 

rectangle calculated from the measurement of its sides’ lengths at the laboratory.  
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The uncertainty in the indirect measure derives from the uncertainties of the direct 

measurements used to calculate it. The method to calculate this uncertainty is known as 

propagation of uncertainty.  

7.1. Propagation of uncertainty. 

Suppose that we want to calculate the value of a magnitude y , dependent on a series 

of magnitudes 1 2  nx x x , which can be known by a direct measurement in the laboratory:  

  1 2( )=   ny f x x x         (7) 

First, we will calculate the mean and the uncertainty values   ii
xx . The best 

estimation of y is obtained by substituting in equation (3) the obtained values for 
ix . 

  
1 2

( )=  
n

y f x x x         (8) 

In order to estimate the uncertainty of  ix we can use the differential analysis, 

described below. 

7.1.1. Differential analysis 

Assuming that the uncertainty  ix  of the variables ix  is small enough, it can be 

demonstrated that the uncertainty  y  can be calculated as:  

  1 2

11 2 =

   
 =  +  ++  = 

   


i i i i

n

n i

in ix x x x

f f f f
y x x x x

x x x x
   (9) 

Be aware that all terms in equation (9) are absolute values and  ix  is a positive number. 

NOTE:  



i

f
x

 is the partial derivative of f with respect to the variable ix ; i. e. it is the 

derivative of the function f with respect to ix  with the other variables held constant (see 

the examples). The subindex 
ix  indicates that this value should be evaluated in the result 

of the partial derivative. 

 

 

EXAMPLE:   
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A physical magnitude y  is determined by the equation: 1 1 2 2= −y a x a x  where 1a  and  

2a  are constants without uncertainty, and the uncertainties of 1x and 2x   are 1x and 2x

respectively. Calculate an equation for the uncertainty of y
.
 

The partial derivatives are: 

𝜕𝑦

𝜕𝑥1
= 𝑎1 and 

𝜕𝑦

𝜕𝑥2
= −𝑎2 

hence: 

∆𝑦 = |𝑎1| · ∆𝑥1 + |𝑎2| · ∆𝑥2 

EXAMPLE:   

A physical magnitude y is determined by the equation: 1 2= n my x x , where m and n are 

constants without uncertainty, and the uncertainties of 1x and 2x  are 1x and 2x

respectively. Calculate an equation for the uncertainty of y
.
 

Solution:  

The partial derivatives are: 

𝜕𝑦

𝜕𝑥1
= 𝑛 · 𝑥1

𝑛−1 · 𝑥2
𝑚 and 

𝜕𝑦

𝜕𝑥2
= 𝑚 · 𝑥2

𝑚−1 · 𝑥1
𝑛 

hence: 

∆𝑦 = |𝑛 · 𝑥1
𝑛−1 · 𝑥2

𝑚| · ∆𝑥1 + |𝑚 · 𝑥2
𝑚−1 · 𝑥1

𝑛| · ∆𝑥2 

EXAMPLE:   

Suppose that we have measured the diameter of a sphere with a precision of 1 cm: 𝐷 =

150 ± 1 𝑐𝑚. Calculate the area (A) and the volume (V) of the sphere and the corresponding 

uncertainties. 

The surface and the volume of the sphere can be calculated as:  

=A 24 R  

=V
34

3
R  
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The radius R is 
2

75cm= =DR and
2

0 5cm = = DR . Therefore, 75 0 0 5cm=   R . For 

the area and the volume we will have:  

=A
2 24 70685 8cm= R  

 =A 28 942 5cm


 =  = A

R
R R R  

 

=V
3 34

3
1767145 9cm= R  

 =V
2 34 35342 9cm



 =  = V

R
R R R  

 

The final results will be: 

=A
3 270700 900 (70 7 0 9)10 cm =     

=V
5 31770000 40000 (17 7 0 4)10 cm =     

 

EXAMPLE:   

Two resistors, 1R  and 2R , have been measured 5 times each: 1R =9.5, 9.8, 10.2, 9.9, 10.1 

  (ohms);  =15,5, 15,2, 14,8, 15,2, 15,0 . The precision of an individual measurement is 

0.1 . Let us find the most likely value of 1R  and 2R  and estimate their corresponding 

uncertainties. If these resistors are connected in parallel, calculate the equivalent resistor of 

this circuit. 

We can resume the measurements of 1R and 2R  in the following tables:  

 

 

 

 

 

 

 

 

 

 

 

 

 

i 1 0 1  iR  
1 1−iR R  2

1 1( )−iR R  

1 9.5 - 0.4 0.16 

2 9.8 - 0.1 0.01 

3 10.2 0.3 0.09 

4 9.9 0.0 0.00 

5 10.1 0.2 0.04 

  49.5  0.30 

i 2 0 1  iR  
2 2−iR R  2

2 2( )−iR R  

1 15.5 0.36 0.1296 

2 15.2 0.06 0.0036 

3 14.8 - 0.34 0.1156 

4 15.2 0.06 0.0036 

5 15.0 - 0.14 0.0196 

  75.7  0.272 
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The mean values of 1R  and 2R are: 

1 =R 1

5
9 9


=  iR  

2 =R 2

5
15 14


=  iR  

 

The standard deviations are: 

2

1 1
1

( )
( ) 0 24

5

−
= =  
 i

acc

R R
R  

2

2 2
2

( )
( ) 0 23

5

−
= =  
 i

acc

R R
R  

The final results are:  

1 1 1max( ( ) ( )) max(0 1 0 24) 0 24 =  =    =  p accR R R   

1 9 9 0 2=    R  

 

2 2 2max( ( ) ( )) max(0 1 0 23) 0 23 =  =    =  p accR R R   

2 15 1 0 2=    R  

For resistors in parallel, the equivalent resistor is: 

1
=

eqR
1 2

1 2 1 2

1 1
+

+  =
R R

eqR R R R
R  

And the best value of eqR is obtained substituting 1R  and 2R  for their corresponding 

1R  and 
2R  mean values, previously calculated:  

1 2

1 2

5 986= =  
+

eq

R R
R

R R
 

The uncertainty of Req is: 

1 2

1 2

 
 =  + 

 

eq eq

eq

R R
R R R

R R
 

2 2

2 1
212 2

1 2 1 2

0 104
( ) ( )

=  +  =  
+ +

R R
RR

R R R R
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Where mean values 
1R and 

2R
 
have been substituted when evaluating the partial 

derivatives. The final result for Req is: 

6 0 0 1=    eqR . 

 

8. Physical laws: Analysis of the dependence between variables. 

Many physical laws establish the dependence of one variable in terms of another one. 

For example, the relation between the speed and the acceleration of an object affected by 

gravity is:  

  𝑣(𝑡) = 𝑣0 + 𝑔 · 𝑡        (10) 

This equation establish a linear relation between 𝑣 and 𝑡, where 𝑣0 is the intercept and 

𝑔 is the slope. 

A physical law is valid if the predicted relation between variables is experimentally 

verified. In the example, we should measure the speed ( )iv t  of an object at different 

sampling instants it  and verify if the linear relation in equation (10) is true. If so, we can 

determine the values of 0v  and g  from the experimental data. 

The next two sections explain two methods to analyze the linear relations between two 

variables and to calculate the parameters of proportionality.  

 

Figure 1. Linear fitting: m  is the slope of the straight line and b is the intercept. 

 

Y 
ax

is
 

X axis 
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8.1. Graphical method. 

When a variable y is linearly proportional to another variable x , the plot of a given set 

of pairs {(𝑥𝑖, 𝑦𝑖)} in a graph leads to a straight line. The general equation of a straight line 

is:  

  = +y mx b         (11) 

Where m is the straight line's slope and b is the intercept. 

Therefore, if the experimental data collected in the laboratory are supposed to obey a 

linear relation, when plotting them a spotted graph will be obtained, and a straight line can 

be drawn, as shown in Figure 1. 

We can draw the “best” straight line through all the points, and we can calculate the 

numerical values of m and b  as shown in Figure.1. It is important to see that the units for 

m and b are:  

  
[ ]

[ ] [ ] [ ]
[ ]

=  =
y

m b y
x

       (12) 

If a linear relation is not found when plotting the experimental data, it is evident that 

they do not obey a linear relation, and is not worth calculating m and b.  

 

 

 

 

 

 

 

 

 

Figure 2. See the example in the text. 

In the proposed example, the result of a set of measurements in the laboratory is a 

series of pairs {(𝑣(𝑡𝑖), 𝑡𝑖)}. 
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t  (s) ( )v t  (m/s) 

0.94 13.21 

1.58 17.23 

1.96 23.99 

2.66 26.74 

2.91 35.57 

3.76 38.43 

 

Figure 2 shows the data plot. 

It can be observed that the experimental data spread as a straight line, as predicted by 

the physical law described in equation (10). Then, applying the described graphical method, 

𝑔 and 𝑣0 values can be calculated as: 𝑔 = 9.5 𝑚 𝑠2⁄  and 𝑣0 = 3 𝑚 𝑠⁄ . 

 

8.2. Least Squares Fitting 

The graphical method is a rough way to fit data to a straight line and obtain its slope 

and intercept. It is easy, but not rigorous enough. These magnitudes can be obtained more 

accurately by using the least squares method.  

Let us consider the equation of a straight line: 

  = +y m x b         (13) 

The least squares method is a mathematical procedure for finding the best-fitting 

straight line to a given set of points by minimizing the sum of the squares of the distances 

from the experimental points to the straight line. If the experimental points are

1 1( ) ( )   n nx y x y , the best-fitting line will be found for values of m (the slope of the 

straight line) and b  (the intercept) obeying the condition: 

∑(𝑚 · 𝑥𝑖 + 𝑏 − 𝑦𝑖)
2 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚       (14) 
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It can be demonstrated that the values m and b  obeying this condition are the solution 

of the following system of equations: 

2









= +

= +

 

  
i i

i i i i

y m x bn

x y m x b x
   (15) 

 

So the values of m and b are given by: 

𝑚 =
|

∑ 𝑦𝑖 𝑛
∑ 𝑥𝑖𝑦𝑖 ∑ 𝑥𝑖

|

|
∑ 𝑥𝑖 𝑛

∑ 𝑥𝑖
2 ∑ 𝑥𝑖

|

=
∑ 𝑦𝑖 ∑ 𝑥𝑖−𝑛 ∑ 𝑥𝑖𝑦𝑖

(∑ 𝑥𝑖)2−𝑛 ∑ 𝑥𝑖
2     (16) 

𝑏 =
|

∑ 𝑥𝑖 ∑ 𝑦𝑖

∑ 𝑥𝑖
2 ∑ 𝑥𝑖𝑦𝑖

|

|
∑ 𝑥𝑖 𝑛

∑ 𝑥𝑖
2 ∑ 𝑥𝑖

|

=
∑ 𝑥𝑖 ∑ 𝑥𝑖𝑦𝑖−∑ 𝑦𝑖 ∑ 𝑥𝑖

2

(∑ 𝑥𝑖)2−𝑛 ∑ 𝑥𝑖
2     (17) 

 

m and b are obtained from the experimental data by applying (16) and (17), so they 

have uncertainties (m ,b ) associated to them. These uncertainties can be estimated by 

applying the following equations:  

  
2

2
2  

 
 
 

 =

− i i

n
m

n x x


       (18) 
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2 2

2
2  

 
 
 

 =

−



 
i

i i

x
b

n x x


       (19) 

These equations have been simplified by supposing that only the iy  values have 

uncertainties and that these uncertainties are the same for all data, that is: ( ) 0 = i ix x

, and ( ) = i iy y . In the case that the uncertainties 
iy are not equal for all the iy data, 

the   value will be obtained as the average value of the data: 1

1=
= =  i

n

yy n i
  .  

 

Before applying the least squares method, it is very advisable to plot the data in order 

to check that the relation between variables is approximately linear. If that is not the case, 

and the relation between variables is not linear, the method is it NOT applicable (see section 

8.3 ).  

When making a least-squares fitting, it is important to take into account all the decimal 

digits obtained during the intermediate steps of the process to calculate m, b, m andb . 

Only the final values should be rounded.  

 

EXAMPLE:   

Suppose that we measure several tension and intensity pairs of values at an electrical circuit 

in order to calculate the resistance of the circuit, and that the following values are obtained:  

V (V) I (A) 

21   1 20   1 

29   1 30   1 

39   1 40   1 

55   2 50   1 

59   2 60   1 

 

We know that =V IR . If we compare the equation = +V RI b (being b = 0) with the 

equation of a straight line: = +y m x b we deduct that R corresponds to the slope of the 

straight line, which can be fitted using the least squares method. 
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 m and b can be obtained by applying equations (16) and (17). In order to do this, we have 

to calculate the following data: 

=y V  =x I  xy  2x  

21 20 420 400 

29 30 870 900 

39 40 1560 1600 

55 50 2750 2500 

59 60 3540 3600 

203= iy  200= ix  9140= i ix y  2 9000= ix  

 

That lead to values of m and b of: 

1 02 0 2= =   = − m R b V  

The uncertainties of these values also have to be calculated. In order to do so,  has to 

be obtained: 

1

1
1 4

=

= =  i

n

y

i

V
n

   

After using equations (19) and (20), the following results are obtained: 

m = 0.0443 Ω 

b  = 1.878 V 

So finally, the calculated resistance is:  =m  R = (1.02±0.04) Ω 

And the intercept is =b (0±2) V. This value for b was the one expected from the 

theoretical equation =V IR . 

 

8.3. Linearization of equations. 

Both the graphical method and least squares method can be only applied when the 

relation between the two variables is linear. However, there are many physical laws 

described by nonlinear relations. For example, the equation relating the position of an 

object and the time in a motion with constant acceleration, provided that the initial velocity 

is zero, is given by:  
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  21
( )

2
=s t at          (20) 

being a the acceleration of the object. 

In some cases such as these it is possible to linearize this equation in order to obtain a 

straight line = +y mx b . There are two methods for linearizing an equation: 

• Changing variables: We can perform a change of variables in order to obtain the 

equation of a straight line. In our example, if we rename the variables as:  

2 →  →t x s y  

The resulting equation is:  

1
2

=y ax  

By comparing with the equation of a straight line, we deduct that: 

1
2

0→  →m a b  

So 2=a m .  

• Using logarithms: This method involves taking logarithms in the equation and using 

their properties to linearize the expression. In our example, if we take logarithms on 

the two sides of the equation: 

21
2

( ) ( )=log s log at  

and apply the properties of the logarithms, we obtain:  

1
2

( ) ( ) 2 ( )= +log s log a log t  

 

Our new variables are: 

( ) ( )→  →x log t y log s  

So we have a linear equation: 

1
2

( ) 2= +y log a x  

where: 
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1
2

2 ( )→  →m b log a  

So finally:  2= ba e  

Once the equation has been linearized, a new table with the data of the new variables 

should be made. These data will be used to calculate m andb , and the plot of x  vs. y  should 

be approach to a straight line.  

In our example and in the case of having used logarithms, we would construct the 

following table:  

 

x y 

1( )log t  1( )log s  

2( )log t  

 

2( )log s  

 

log(t )n  ( )nlog s  

 

9. Graphs 

9.1. General requirements. 

One of the most useful ways of presenting experimental results is by plotting graphs. 

In order to do this, it is convenient to have in mind that:  

• Experimental points should be clearly visible.  

• Scales should be chosen so that data occupy the maximum space possible in the 

graph. The vertical and horizontal axes can be scaled different if it is necessary and the origin 

of the graph does not have to be (0 0) .  

• Mark the axes at periodic intervals (and not for each experimental point). Use a 

comfortable scale to make calculations easy.  

• When representing experimental points, add the uncertainty of each of them by 

drawing vertical and horizontal error bars. In order to do so, draw a cross centered on each 

experimental data. The arms of the cross should have a length of x (for the horizontal 

error bar) and y (for the vertical error bar). 

• Add the units on each axis.  
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• If the experimental data can be fitted by a straight line, draw the line of best fit. 

This straight line is obtained by applying = +y m x b , being m and b the ones obtained from 

the least squares fitting.  

 

9.2. Graph papers. 

The use of millimeter paper (see figure 3a) makes it easier to draw a plot.  When 

marking intervals on a millimeter paper, the distance between points is proportional to the 

difference between the values.  

For example, if we represent 3 values being: 1 1=x , 2 10=x , and 3 100=x corresponding 

to points 1P , 2P , and 3P , the distance between 1P  and 2P will be proportional to 2 1 9− =x x  

and the distance between 2P and 3P will be proportional to 3 2 90− =x x . 

There exists another type of paper, called logarithmic paper (see figure 3b). In this 

paper, the distance between points is proportional to the difference between the 

logarithms of the values. In a logarithmic graph, the distance between 1P  and 2P  will be 

proportional to 2 1( ) ( ) 1 0 1− = − =Log x Log x , and the distance between 3P  and 2P  will be 

proportional to 3 2( ) ( ) 2 1 1− = − =Log x Log x . In this way, the logarithmic paper makes the 

transformation to the logarithm scale, without having to calculate the actual logarithms. 

This represents an advantage in many cases. Representing log y vs. log x in millimeter 

paper is the same as representing y vs. x in logarithmic paper.  

 

 

 

 

 

 

 

 

 

Figure 3. (a) Graph paper. (b) Logarithmic paper. 
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