|                                                                                                 |                                                                                       | <i>Physics Department<br/>Image and Sound Laboratory</i>                                                    |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                           |  |  |
|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------|--|--|
| Lab<br>group<br>Session c<br>Deadline                                                           | late                                                                                  |                                                                                                             | Student Names                                                                                                                       | ()]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        | Stamp                                                                     |  |  |
| S                                                                                               | TAT                                                                                   | IONA<br>1                                                                                                   | RY SOUI                                                                                                                             | ND WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AVE                                                    | S                                                                         |  |  |
| Note:<br>Inclu<br>The l<br>points.<br>6. Measu<br>6.1. Tube<br>Calculate<br>with the<br>harmoni | de units a<br>east squa<br>rement<br>e open<br>e the aver<br>ir correspo<br>c and for | ond errors in<br>res fit lines v<br>c of the fr<br>at both e<br>age value of<br>onding error<br>a tube open | all tables<br>will be drawn on the<br>requencies of s<br>nds.<br>the resonance freq<br>. Complete the follo<br>at both ends, the fu | e same graph<br>standing v<br>uencies found<br>wing table (n<br>undamental h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | as the e<br>vaves<br>(vres). E<br>is the co<br>armonic | experimental<br>in a tube.<br>Express them<br>prresponding<br>corresponds |  |  |
| to n=1).                                                                                        |                                                                                       |                                                                                                             | # (1                                                                                                                                | πì                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                      |                                                                           |  |  |
| <i>v</i> <sub>1</sub>                                                                           |                                                                                       | <i>v</i> <sub>2</sub>                                                                                       | <i>v</i> <sub>3</sub>                                                                                                               | $v_n$ ( ±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | )                                                      | п                                                                         |  |  |
|                                                                                                 |                                                                                       |                                                                                                             |                                                                                                                                     | 1. Contraction of the second s | 1.24                                                   |                                                                           |  |  |
|                                                                                                 |                                                                                       |                                                                                                             | 100                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                      |                                                                           |  |  |
|                                                                                                 |                                                                                       |                                                                                                             |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                      |                                                                           |  |  |
|                                                                                                 |                                                                                       |                                                                                                             | 13                                                                                                                                  | 0.300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |                                                                           |  |  |
| Represe                                                                                         | nt y=v <sub>res</sub>                                                                 | against x =                                                                                                 | n.                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I                                                      |                                                                           |  |  |



- y intercept:

 $b = \Delta b =$   $b = \pm ()$ 

- Interpret the fitting parameters, using equation [4] and obtain the propagation speed V  $_{\it pro}$  ,

 $v_{pro} = \pm$ 

• What is the fundamental frequency of the tube?

## 6.1. Tube closed at one end.

Calculate the average value of the resonance frequencies found (vres). Express them with their corresponding error. Complete the following table Remember that in the case of a closed end the first value of n is 0

| $v_1$ | v <sub>2</sub> | v <sub>3</sub> | $v_n (\pm)$ | n |
|-------|----------------|----------------|-------------|---|
|       |                |                |             |   |
|       |                |                |             |   |
|       |                |                |             |   |
|       |                |                |             |   |
|       |                |                |             |   |
|       |                |                |             |   |
|       |                |                |             |   |

• Represent  $y=v_{res}$  against x = n.



- Intercept: b =  $\Delta b =$ ± ( b = ) • Using equation [5], interpret the fitting parameters and find the propagation speed  $V_{pro}$  $\pm$  $v_{pro} =$ • What is the fundamental frequency of the tube? Does it coincide with the observed one? 7. Measurement of the tube lengths that cause the condition of resonant standing waves.. Calculate the average value of the tube lengths, L, that produce the resonance condition. Indicate the error of each measurement. Complete the following table. п  $L_1$  $L_2$  $L_3$  $L_n$  (  $\pm$  ) Indicate what value of n corresponds to each of the values of L in the former section. What is the meaning of n in this case?



- y intercept:  $b = \Delta b =$   $b = \pm ()$ 

 $\bullet$  Interpret the fitting parameters, using equation [2] and [3] and obtain the propagation speed V  $_{\it pro}$ 

 $v_{pro} = \pm$ 

8. Characterization of a resonant standing wave in a tube.

## 8.1. Tube open at both ends.

Indicate the distances from the origin at which the nodes and antinodes measured in this section are located. Give the values with their error by completing the following table

| L | Node/Antinode |
|---|---------------|
|   |               |
|   |               |
|   |               |
|   |               |
|   |               |

Draw a diagram of the standing wave that has formed in the tube, indicating the nodal and antinodal pressure variation points.

From the values in the table and the diagram, calculate the wavelength. Compare with the theoretical value, from equation [1].

 $\lambda = \pm$ 

## 8.1. Tube open at one end.

• Indicate the distances from the origin at which the nodes and antinodes measured in this section are located. Give the values with their error by completing the following table

| L | Node/Antinode             |  |  |
|---|---------------------------|--|--|
|   | Contraction (Contraction) |  |  |
|   |                           |  |  |
|   |                           |  |  |
|   |                           |  |  |

• Draw a diagram of the standing wave that has formed in the tube, indicating the nodal and antinodal pressure variation points.

• From the values in the table and the diagram, calculate the wavelength. Compare with the theoretical value, from equation [1].

 $\lambda = \pm$ 

.

