

Physics Department Electricity and Magnetism Laboratory

Lab Group		Students who hand in the report	Control Stamp
Session D	ate		
Deadline L	Date		

MAGNETIC FORCES

Note:

- Include in the tables all units and uncertainties of the measurements.
- The straight lines of the least squares fit should be drawn in the same plot as the experimental points.

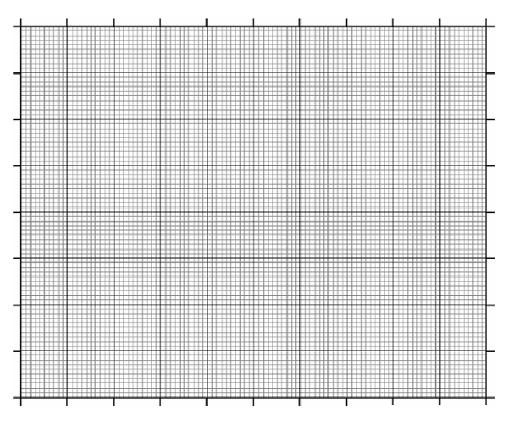
5.2 Dependence of the magnetic force with the current.

Measurement of mo

Current I	m ₀ measurement #1	m ₀ measurement #2	Mean value of m ₀		
0 A					

Measurement of m_I

Current I measurement #1		m _I measurement #2	Mean value of m _I		


_			-	_	_
Cal		IST	ınn	Λt	_
Cai	Cui	aL	IVII	UI	I m

Current I	F _m

Expression used to calculate the uncertainty of F_m

 $\Delta F_m =$

Plot: F_m - I

• Least-squares fit of $y = F_m$ with respect to x = I.

$$\sum x_i = \sum y_i = \sum x_i y_i = \sum x_i^2 = n$$

$$\sigma = \sum x_i = \sum x_i^2 = \sum x_i^2 = n$$

- Results of the least squares fit:
 - Slope.

$$\Delta m =$$

$$m = \pm$$
 ()

- Intercept.

$$\Delta b =$$

• Interpretation of the values of the fit parameters obtained from the least squares fit of the experimental data using equation [2].

• Get the value of B	incida tha m	agnot from the	fit parameters	obtained
• Get the value of B	inside the m	lagnet from the	fit parameters	optained

Expression used to calculate F_m and its uncertainty.

$$\Delta B =$$

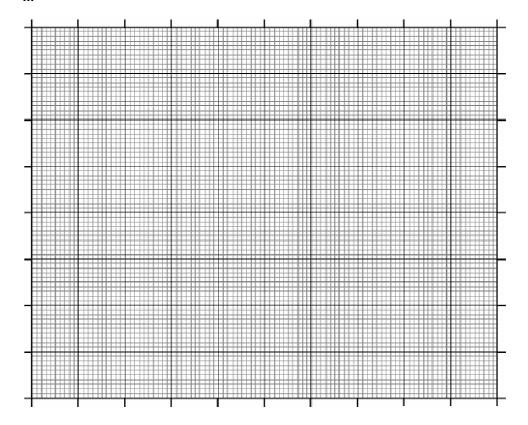
Final numerical results

$$B = \pm \qquad ()$$

5.3 Dependence of the magnetic force with the length of the conductor.

Measurement of m_I

Length (m)	m _I measurement #1	m _I measurement #2	Mean value of m _I
0.01			
0.02			
0.03			
0.04			
0.06			
0.08			


Calculation of F_m

Length (m)	F _m
0.01	
0.02	
0.03	
0.04	
0.06	
0.08	

Expression used to calculate the uncertainty of F_m

$$\Delta F_m =$$

Plot: F_m - L

• Least-squares fit of $y = F_m$ with respect to x = L.

$$\sum x_i = \sum y_i = \sum x_i y_i = \sum x_i^2 = n = \sigma$$

•	Results of	the least squ	ares fit:				
	- <u>Slope.</u>						
		m =			Δm =		
		m =	±	()		
	- <u>Interc</u> e	ept.					
		b =			Δb =		
		b =	±	()		
		of the values of the experi					ng a
• Get t	he value of	B inside the	magnet fro	m the fit p	arameter	s obtained	
Expres	sion used to	calculate F _m a	nd its uncerta	ainty.			
		B =					
		ΔB =					
Final n	umerical res	ults					
	В	=	±	()		
1							

Questions.									
• Compare the consistent with	values of B each other?	obtained	in parts	5.2	and	5.3.	Are	the	results